An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria

نویسنده

  • Jean-Luc Marichal
چکیده

The most often used operator to aggregate criteria in decision making problems is the classical weighted arithmetic mean. In many problems however, the criteria considered interact, and a substitute to the weighted arithmetic mean has to be adopted. We show that, under rather natural conditions, the discrete Choquet integral is an adequate aggregation operator that extends the weighted arithmetic mean by the taking into consideration of the interaction among criteria. The axiomatic that supports the Choquet integral is presented and an intuitive approach is proposed as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the axiomatization of some classes of discrete universal integrals

Following the ideas of the axiomatic characterization of the Choquet integral due to [D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (1986) 255–261] and of the Sugeno integral given in [J.-L. Marichal, An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework, IEEE Trans. Fuzzy Syst. 9 (2001...

متن کامل

An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework

We present a model allowing to aggregate decision criteria when the available information is of a qualitative nature. The use of the Sugeno integral as an aggregation function is justified by an axiomatic approach. It is also shown that the mutual preferential independence of criteria reduces the Sugeno integral to a dictatorial aggregation.

متن کامل

Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making

The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...

متن کامل

On Non-monotonic Choquet integrals as Aggregation Functions

This paper deals with non-monotonic Choquet integral, a generalization of the regular Choquet integral. The discrete non-monotonic Choquet integral is considered under the viewpoint of aggregation. In particular we give an axiomatic characterization of the class of non-monotonic Choquet integrals.We show how the Shapley index, in contrast with the monotonic case, can assume positive values if t...

متن کامل

Projects performance evaluation model based on Choquet Integral

In most of the multi–criteria decision–analysis (MCDA) problems in which the Choquet integral is used as aggregation function, the coefficients of Choquet integral (capacity) are not known in advance. Actually, they could be calculated by capacity definition methods. In these methods, the preference information of decision maker (DM) is used to constitute a possible solution space. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Fuzzy Systems

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2000